283 research outputs found

    The very first Pop III stars and their relation to bright z~6 quasars

    Full text link
    We discuss the link between dark matter halos hosting the first PopIII stars formed at redshift z > 40 and the rare, massive, halos that are generally considered to host bright z~6 quasars. We show that within the typical volume occupied by one bright high-z QSO the remnants of the first several thousands PopIII stars formed do not end up in the most massive halos at z~6, but rather live in a large variety of environments. The black hole seeds planted by these very first PopIII stars can easily grow to M > 10^{9.5} Msun by z=6 assuming Eddington accretion with radiative efficiency epsilon~0.1. Therefore quenching of the accretion is crucial to avoid an overabundance of supermassive black holes. We implement a simple feedback model for the growth of the seeds planted by PopIII stars and obtain a z~6 BH mass function consistent with the observed QSO luminosity function.Comment: 5 pages, to appear in the proceedings of "First Stars III", AIP Conference Series, T. Abel, A. Heger and B. O'Shea ed

    Distribution of the very first PopIII stars and their relation to bright z~6 quasars

    Full text link
    We discuss the link between dark matter halos hosting the first PopIII stars and the rare, massive, halos that are generally considered to host bright quasars at high redshift z~6. The main question that we intend to answer is whether the super-massive black holes powering these QSOs grew out from the seeds planted by the first intermediate massive black holes created in the universe. This question involves a dynamical range of 10^13 in mass and we address it by combining N-body simulations of structure formation to identify the most massive halos at z~6 with a Monte Carlo method based on linear theory to obtain the location and formation times of the first light halos within the whole simulation box. We show that the descendants of the first ~10^6 Msun virialized halos do not, on average, end up in the most massive halos at z~6, but rather live in a large variety of environments. The oldest PopIII progenitors of the most massive halos at z~6, form instead from density peaks that are on average one and a half standard deviations more common than the first PopIII star formed in the volume occupied by one bright high-z QSO. The intermediate mass black hole seeds planted by the very first PopIII stars at z>40 can easily grow to masses m_BH>10^9.5 Msun by z=6 assuming Eddington accretion with radiative efficiency \epsilon~0.1. Quenching of the black hole accretion is therefore crucial to avoid an overabundance of supermassive black holes at lower redshift. This can be obtained if the mass accretion is limited to a fraction \eta~6*10^{-3} of the total baryon mass of the halo hosting the black hole. The resulting high end slope of the black hole mass function at z=6 is \alpha ~ -3.7, a value within the 1\sigma error bar for the bright end slope of the observed quasar luminosity function at z=6.Comment: 30 pages, 9 figures, ApJ accepte

    Violent Relaxation Around a Massive Black Hole

    Get PDF
    I present galaxy models resulting from violent relaxation in the presence of a pre-existing black hole. The models are computed by maximizing the entropy of the stellar dynamical system. I show that their properties are very similar to those of adiabatic growth models for a suitable choice of parameters. This suggests that observations of nuclear light profiles and kinematics alone may not be sufficient to discriminate between scenarios where a black hole grows adiabatically in the core of a galaxy, and scenarios where the black hole formation preceeds galaxy formation.Comment: 13 pages, 3 figures, uses aasms4.sty, to appear in ApJ

    Measuring the mass of high-z galaxies with NGST

    Full text link
    We discuss dynamical mass measurements of high-z galaxies with the Next Generation Space Telescope (NGST). In particular, we review some of the observational limits with the current instrument/telescope generation, we discuss the redshift limits and caveats for absorption and emission lines studies with NGST, and the existence of suitable targets at high redshift. We also briefly summarize strengths and weaknesses of proposed NGST instruments for dynamical studies.Comment: to appear in "The Mass of Galaxies at Low and High Redshift" R. Bender and A. Renzini ed
    • …
    corecore